

Reactor Design II

Week 7

Energy Balance in Reactors with Exchange

Saba A. Gheni, Ph.D.

Chemical Engineering Department

ghenis@tu.edu.iq

كلبة الهندسة - COLLEGE OF ENGINEERING

Introduction

- Chemical Reaction Engineering (CRE) examines the principles of energy transfer in reactors.
- This lecture focuses on reactors with heat exchange and user-friendly energy balance equations to optimize reactor design and operation.

كلبة الهندسة - COLLEGE OF ENGINEERING

Topics to be Addressed

- - Fundamentals of Reactors with Heat Exchange
- - Energy Balance Derivations and Assumptions
- - Adiabatic Operation and Heat Exchange Systems
- - Reversible Reactions and Temperature Effects
- - Practical Examples and User-Friendly Equations

كلية الصندسة - COLLEGE OF ENGINEERING

Objectives

- By the end of this lecture, students will be able to:
- Understand energy balance principles for reactors with heat exchange.
- - Apply energy balance equations to adiabatic and heat exchange systems.
- - Analyze reversible reactions and their temperature dependencies.
- - Use user-friendly equations to simplify reactor design and operation.

كلية الصندسة - COLLEGE OF ENGINEERING

Introduction

- Heat exchange in reactors is crucial for controlling reaction rates and ensuring efficiency.
- This session includes discussions on adiabatic and heat exchange systems, constant and variable temperature profiles, and reversible reaction analysis.

كلية الصندسة - COLLEGE OF ENGINEERING

Last Lecture Energy Balance Fundamentals

$$\sum F_{i0} E_{i0} - \sum F_{i} E_{i} + \dot{Q} - \dot{W} = \frac{dE_{sys}}{dt}$$

Substituting for \dot{W}

$$\sum F_{i0} \underbrace{\left[U_{i0} + P_0 \tilde{V}_{i0} \right]}_{H_i} - \sum F_i \underbrace{\left[U_i + P \tilde{V}_i \right]}_{H_i} + \dot{Q} - \dot{W}_S = \frac{dE_{sys}}{dt}$$

$$\sum F_{i0}H_{i0} - \sum F_{i}H_{i} + \dot{Q} - \dot{W}_{S} = \frac{dE_{sys}}{dt}$$

$$\dot{Q} - \dot{W}_S + \sum_i F_{i0} H_{i0} - \sum_i F_i H_i = 0$$

COLLEGE OF ENGINEERING - كلبة الهندسة
Tikrit University - جامعة تكريت

- Reactors with Heat Exchange
- User friendly Energy Balance Derivations
 - Adiabatic
 - Heat Exchange Constant T_a
 - Heat Exchange Variable T_a Co-current
 - Heat Exchange Variable T_a Counter Current

كلية الصندسة - COLLEGE OF ENGINEERING

Adiabatic Operation CSTR

Elementary liquid phase reaction carried out in a CSTR

The feed consists of both - Inerts I and Species A with the ratio of inerts I to the species A being 2 to 1.

كلية الهندسة - COLLEGE OF ENGINEERING

مریقت الی انجاح مریقت الی انجاح مریقت الی انجاح

Adiabatic Operation CSTR

- Assuming the reaction is irreversible for CSTR, A \rightarrow B, (K_C = 0) what reactor volume is necessary to achieve 80% conversion?
- If the exiting temperature to the reactor is 360K, what is the corresponding reactor volume?
- Make a Levenspiel Plot and then determine the PFR reactor volume for 60% conversion and 95% conversion. Compare with the CSTR volumes at these conversions.
- Now assume the reaction is reversible, make a plot of the equilibrium conversion as a function of temperature between 290K and 400K.

كلية الصندسة - COLLEGE OF ENGINEERING

1) Mole Balances: $V = \frac{F_{A0}X}{-r_A|_{exit}}$ College of Engineering - کلبهٔ الهندسه

2) Rate Laws:

$$-r_{A} = k \left[C_{A} - \frac{C_{B}}{K_{C}} \right]$$

$$\mathbf{k} = \mathbf{k}_1 \mathbf{e}^{\frac{\mathbf{E}}{\mathbf{R}} \left(\frac{1}{\mathbf{T}_1} - \frac{1}{\mathbf{T}}\right)}$$

$$\mathbf{K}_{\mathrm{C}} = \mathbf{K}_{\mathrm{C1}} \exp\left[\frac{\Delta \mathbf{H}_{\mathrm{Rx}}}{\mathrm{R}} \left(\frac{1}{\mathrm{T}_{2}} - \frac{1}{\mathrm{T}}\right)\right]$$

3) Stoichiometry:

$$\mathbf{C}_{\mathbf{A}} = \mathbf{C}_{\mathbf{A}\mathbf{0}} \big(\mathbf{1} - \mathbf{X} \big)$$

 $C_{\rm B} = C_{\rm A0} X$

COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

4) Energy Balance Adiabatic, $\Delta C_p = 0$ $T = T_0 + \frac{(-\Delta H_{Rx})X}{\Sigma \Theta_i C_{P_i}} = T_0 + \frac{(-\Delta H_{Rx})X}{C_{P_A} + \Theta_I C_{P_I}}$ $T = 300 + \left[\frac{-(-20,000)}{164 + (2)(18)}\right] X = 300 + \frac{20,000}{164 + 36} X$

T = 300 + 100 X

كلية الهندسة - COLLEGE OF ENGINEERING

Irreversible for Parts (a) through (c)

$$-r_{A} = kC_{A0}(1-X)(i.e., K_{C} = \infty)$$

(a) Given X = 0.8, find T and V

كلية الهندسة - COLLEGE OF ENGINEERING

Given X, Calculate T and V

$$V = \frac{F_{A0}X}{-r_{A}|_{exit}} = \frac{F_{A0}X}{kC_{A0}(1-X)}$$

$$T = 300 + 100(0.8) = 380K$$

$$k = 0.1 \exp \frac{10,000}{1.989} \left[\frac{1}{298} - \frac{1}{380} \right] = 3.81$$

$$V = \frac{F_{A0}X}{-r_{A}} = \frac{(5)(0.8)}{(3.81)(2)(1-0.8)} = 2.82 \, \text{dm}^{3}$$
COLLEGE OF ENGINEERING - كلبة المنحسة - Tikrit University - حامعة تكست - College of the second

كلية الصندسة - COLLEGE OF ENGINEERING

(c) Levenspiel Plot

كلبة الهندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

CSTR X = 0.6 T = 360 K

كلية الهندسة - COLLEGE OF ENGINEERING

CSTR: Adiabatic Example -Summary

CSTR	X = 0.6	T = 360	$V = 2.05 \text{ dm}^3$
PFR	X = 0.6	$T_{exit} = 360$	$V = 5.28 \text{ dm}^3$
CSTR	X = 0.95	T = 395	$V = 7.59 \text{ dm}^3$
PFR	X = 0.95	$T_{exit} = 395$	$V = 6.62 \text{ dm}^3$

كلية الصندسة - COLLEGE OF ENGINEERING

Energy Balance in terms

of Enthalpy

 $\sum F_i H_i \Big|_V - \sum F_i H_i \Big|_{V + \Lambda V} + Ua (T_a - T) \Delta V = 0$

$$\frac{-d\sum F_iH_i}{dV} + Ua(T_a - T) = 0$$

$$\frac{-d\sum F_i H_i}{dV} = -\left[\sum F_i \frac{dH_i}{dV} + \sum H_i \frac{dF_i}{dV}\right]$$

كلية المندسة - COLLEGE OF ENGINEERING

PFR Heat Effects

 $\frac{dF_i}{dV} = r_i = v_i \left(-r_A\right)$ $H_{i} = H_{i}^{0} + C_{Pi} (T - T_{R})$

$$\frac{dH_i}{dV} = C_{Pi} \frac{dT}{dV}$$

$$\frac{-d\sum F_i H_i}{dV} = -\left[\sum F_i C_{Pi} \frac{dT}{dV} + \sum H_i \upsilon_i \left(-r_A\right)\right]$$

 $\sum \upsilon_i H_i = \Delta H_{R_X}$ COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University جامعة تكريت

PFR Heat Effects

$$-\left[\sum C_{Pi}F_{i}\frac{dT}{dV}+\mathsf{D}H_{Rx}\left(-r_{A}\right)\right]+Ua\left(T_{a}-T\right)=0$$

$$\sum F_i C_{Pi} \frac{dT}{dV} = \mathsf{D}H_{Rx} r_A - Ua \left(T - T_a\right)$$

$$\frac{dT}{dV} = \frac{\left(\mathsf{D}H_{Rx}\right)\left(-r_{A}\right) - Ua\left(T - T_{a}\right)}{\sum F_{i}C_{Pi}}$$

Need to determine T_a

كلية الهندسة - COLLEGE OF ENGINEERING

Heat Exchange:

$$\frac{dT}{dV} = \frac{(-r_A)(-\Delta H_{Rx}) - Ua(T - T_a)}{\sum F_i C_{P_i}}$$

$$\sum F_i C_{P_i} = F_{A0} \left[\sum \Theta_i C_{P_i} + \Delta C_P X \right], \text{ if } \Delta C_P = 0 \text{ then}$$

$$\frac{dT}{dV} = \frac{(-r_A)(-DH_{Rx}) - Ua(T - T_a)}{F_{A0} \sum Q_i C_{P_i}}$$
Need to determine T_a

Sollege OF ENGINEERING - كلية المنحسة Tikrit University

Heat Exchange Example: Case 1 - Adiabatic

Energy Balance:

Adiabatic (Ua=0) and $\Delta C_P=0$

$$T = T_0 + \frac{\left(-\Delta H_{Rx}\right)X}{\sum \Theta_i C_{P_i}} \qquad (16A)$$

كلبة الهندسة - COLLEGE OF ENGINEERING

User Friendly Equations

A. Constant Ta e.g., Ta = 300K

B. Variable T_a Co-Current

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}C_{P_{cool}}}, V = 0 \quad T_a = T_{ao} \quad (17C)$$

C. Variable T_a Counter Current

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}C_{P_{cool}}} \quad V = 0 \quad T_a = ? \text{ Guess}$$

Guess T_a at V = 0 to match $T_{a0} = T_{a0}$ at exit, i.e., V = V_f COLLEGE OF ENGINEERING - كلية الهنديسة

Heat Exchanger Energy Balance Variable T_a Co-current

Coolant Balance:

$$\begin{split} \dot{m}_{C}H_{C}\big|_{V} &-\dot{m}_{C}H_{C}\big|_{V+\Delta V} + Ua\Delta V(T-T_{a}) = 0\\ &-\dot{m}_{C}\frac{dH_{C}}{dV} + Ua(T-T_{a}) = 0\\ &H_{C} = H_{C}^{0} + C_{PC}(T_{a} - T_{r})\\ &\frac{dH_{C}}{dV} = C_{PC}\frac{dT_{a}}{dV}\\ &\frac{dT_{a}}{dV} = \frac{Ua(T-T_{a})}{\dot{m}_{C}C_{PC}}, V = 0 \quad T_{a} = T_{a0} \end{split}$$
College of engineering - Appendix the state of the stat

Heat Exchanger Energy Balance Variable T_a Counter-current

$$\ln - \operatorname{Out} + \operatorname{Heat} \operatorname{Added} = 0$$

$$\dot{m}_{C} H_{C} \big|_{V+\Delta V} - \dot{m}_{C} H_{C} \big|_{V} + Ua\Delta V (T - T_{a}) = 0$$

$$\dot{m}_C \, \frac{dH_C}{dV} + Ua(T - T_a) = 0$$

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}_C C_{PC}}$$

COLLEGE OF ENGINEERING - كلبة المنحسة Tikrit University - جامعة تكريت

Elementary liquid phase reaction carried out in a PFR

The feed consists of both inerts I and species A with the ratio of inerts to the species A being 2 to 1. COLLEGE OF ENGINEERING - كلبة الهندسة Tikrit University - جامعة تكريت

1) Mole Balance:

(1)
$$\frac{\mathrm{dX}}{\mathrm{dV}} = -r_{\mathrm{A}}/F_{\mathrm{A0}}$$

2) Rate Laws:

(2)
$$r_A = -k \left[C_A - \frac{C_B}{K_C} \right]$$

(3)
$$k = k_1 \exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]$$

(4)
$$K_{C} = K_{C2} \exp\left[\frac{\Delta H_{Rx}}{R}\left(\frac{1}{T_{2}} - \frac{1}{T}\right)\right]$$

كلية الهندسة - COLLEGE OF ENGINEERING

3) Stoichiometry:
$$C_A = C_{A0}(1-X)$$
 (5)
 $C_B = C_{A0}X$ (6)
4) Heat Effects: $\frac{dT}{dV} = \frac{(\Delta H_R)(-r_A) - Ua(T-T_a)}{F_{A0}\sum \theta_i C_{Pi}}$ (7)
 $(\Delta C_P = 0)$
 $X_{eq} = \frac{k_C}{1+k_C}$ (8)
COLLEGE OF ENGINEERING - λ_{eq} illuice with $\sum \theta_i C_{Pi} = C_{PA} + \theta_I C_{PI}$ (9)
Tikrit University - ΔL_{eq} illuice λ_{eq}

Parameters: ΔH_R , E, R, T_1 , T_2 , k_1 , k_{C2} , Ua, T_a , F_{A0} , C_{A0} , C_{PA} , C_{PI} , θ_I , $rate = -r_A$

كلية الصندسة - COLLEGE OF ENGINEERING

PFR Heat Effects

Heat Heat generated removed $\frac{dT}{dV} = \frac{Q_g - Q_r}{\sum F_i C_{P_i}}$ $\sum F_{i}C_{Pi} = \sum F_{A0} (Q_{i} + U_{i}X) C_{Pi} = F_{A0} \left| \sum Q_{i}C_{Pi} + DC_{P}X \right|$ $\frac{dT}{dV} = \frac{\left(\mathsf{D}H_R\right)\left(r_A\right) - Ua\left(T - T_a\right)}{F_{A0}\left[\sum q_i C_{Pi} + \mathsf{D}C_P X\right]}$ كلية الهندسة - COLLEGE OF ENGINEERING

Heat Exchanger – Example Case 2 – Adiabatic

Mole Balance:

$$\frac{dX}{dV} = \frac{-r_A}{F_{A0}}$$

Energy Balance:

Adiabatic and $\Delta C_P = 0$ Ua=0

$$\Gamma = T_0 + \frac{\left(-\Delta H_{Rx}\right)X}{\Sigma \Theta_i C_{P_i}} \qquad (16A)$$

Additional Parameters

(17A) & (17B)
$$T_0, \Sigma \Theta_i C_{P_i} = C_{P_A} + \Theta_I C_{P_I}$$

كلية الهندسة - COLLEGE OF ENGINEERING

Adiabatic PFR

Example: Adiabatic

Find conversion, X_{eq} and T as a function of reactor volume

كلية الصندسة - COLLEGE OF ENGINEERING

Heat Exchange

$$\frac{dT}{dV} = \frac{(-r_A)(-\Delta H_{Rx}) - Ua(T - T_a)}{\sum F_i C_{P_i}}$$

$$\sum F_i C_{P_i} = F_{A0} \left[\sum \Theta_i C_{P_i} + \Delta C_P X \right], \text{ if } \Delta C_P = 0 \text{ then}$$

$$\frac{\mathrm{dT}}{\mathrm{dV}} = \frac{(-r_{\mathrm{A}})(-\Delta H_{\mathrm{Rx}}) - \mathrm{Ua}(\mathrm{T} - \mathrm{T_{a}})}{F_{\mathrm{A0}} \sum \Theta_{\mathrm{i}} C_{\mathrm{P_{i}}}} \qquad (16\mathrm{B})$$

COLLEGE OF ENGINEERING TALE

User Friendly Equations

A. Constant Ta (17B) Ta = 300K

Additional Parameters (18B – (20B):

$$\mathbf{T}_{a}, \ \Sigma \Theta_{i} \mathbf{C}_{\mathbf{P}_{i}}, \ \mathrm{Ua}$$

B. Variable T_a Co-Current

$$\frac{dT_a}{dV} = \frac{Ua(T - T_a)}{\dot{m}C_{P_{cool}}} \quad V = 0 \quad T_a = T_{ao} \quad (17C)$$

C. Variable T_a Countercurrent

$$\frac{dT_a}{dV} = \frac{Ua(T_a - T)}{\dot{m}C_{P_{cool}}} \qquad V = 0 \qquad T_a = ?$$
COLLEGE OF ENGINEERING V = 0 to match T_{a0} = T_{a0} at exit, i.e., V = V_f

Heat Exchange Energy Balance Variable T_a Counter-current

Coolant balance:

In - Out + Heat Added = 0

$$\dot{m}_{C}H_{C}|_{V} - \dot{m}_{C}H_{C}|_{V+\Delta V} + Ua\Delta V(T-T_{a}) = 0$$

$$-\dot{m}_{C}\frac{dH_{C}}{dV} + Ua(T-T_{a}) = 0$$

$$H_{C} = H_{C}^{0} + C_{PC}(T_{a} - T_{r})$$

$$\frac{dH_{C}}{dV} = C_{PC}\frac{dT_{a}}{dV}$$

$$\frac{dH_{C}}{dV} = C_{PC}\frac{dT_{a}}{dV}$$

$$\frac{dT_{a}}{W} = \frac{Ua(T-T_{a})}{W}, V = 0 \quad T_{a} = T_{a}0$$

dV

 $\dot{m}_{C}C_{PC}$

COLLEGE OF ENGINEERING - كلبة الهندسة جامعة تكريت - Tikrit University

Heat Exchange Energy Balance Variable T_a Co-current

In - Out + Heat Added = 0

$$\dot{m}_{C}H_{C}|_{V+\Delta V} - \dot{m}_{C}H_{C}|_{V} + Ua\Delta V(T-T_{a}) = 0$$

$$\dot{m}_{C}\frac{dH_{C}}{dV} + Ua(T-T_{a}) = 0$$

$$\frac{dT_{a}}{dV} = \frac{Ua(T_{a}-T)}{\dot{m}_{C}C_{PC}}$$

All equations can be used from before except dT_a/dV which must be changed to a negative. To arrive at the correct integration we must guess the T_a value at V=0, integrate and see if T_{a0} matches; if not, re-guess the value for T_a at V=0

كلية الهندسة - COLLEGE OF ENGINEERING

Derive the user-friendly Energy-Balance for a PBR

$$\int_{0}^{W} \frac{Ua}{\rho_{B}} (T_{a} - T) dW + \sum F_{i0} H_{i0} - \sum F_{i} H_{i} = 0$$

Differentiating with respect to W:

$$\frac{\mathrm{Ua}}{\rho_{\mathrm{B}}} \left(\mathrm{T_{a}} - \mathrm{T} \right) + 0 - \sum \frac{\mathrm{dF_{i}}}{\mathrm{dW}} \mathrm{H_{i}} - \sum \mathrm{F_{i}} \frac{\mathrm{dH_{i}}}{\mathrm{dW}} = 0$$

كلية المندسة - COLLEGE OF ENGINEERING

Derive the user-friendly Energy Balance for a PBR

Mole Balance on species i:

$$\frac{dF_i}{dW} = r_i' = v_i \left(-r_A'\right)$$

Enthalpy for species i:

$$H_{i} = H_{i}^{o}(T_{R}) + \int_{T_{R}}^{T} C_{Pi} dT$$

كلية الهندسة - COLLEGE OF ENGINEERING

Derive the user-friendly Energy Balance for a PBR

Differentiating with respect to W:

$$\frac{\mathrm{dH}_{\mathrm{i}}}{\mathrm{dW}} = 0 + \mathrm{C}_{\mathrm{Pi}} \frac{\mathrm{dT}}{\mathrm{dW}}$$

$$\frac{Ua}{\rho_{B}}(T_{a} - T) + r_{A}' \sum \upsilon_{i} H_{i} - \sum F_{i} C_{Pi} \frac{dT}{dW} = 0$$

كلية الهندسة - COLLEGE OF ENGINEERING

Derive the user-friendly Energy Balance for a PBR $\frac{Ua}{\rho_B}(T_a - T) + r_A' \sum \upsilon_i H_i - \sum F_i C_{Pi} \frac{dT}{dW} = 0$ $\sum \upsilon_i H_i = \Delta H_R(T)$

 $F_{i} = F_{A0} (\Theta_{i} + \upsilon_{i} X)$

Final Form of the Differential Equations in Terms of Conversion:

A:

$$\frac{\mathrm{d}T}{\mathrm{d}W} = \frac{\frac{\mathrm{U}a}{\rho_{\mathrm{B}}} (T_{\mathrm{a}} - T) + r_{\mathrm{A}}' \Delta H_{\mathrm{R}}(T)}{F_{\mathrm{A0}} [\sum \Theta_{\mathrm{i}} \widetilde{C}_{\mathrm{Pi}} + \Delta \hat{C}_{\mathrm{P}} X]} = f(X, T)$$
COLLEGE OF Envolvements - Operation of the state of the stat

Derive the user-friendly Energy Balance for a PBR

Final form of terms of Molar Flow Rate:

$$\frac{dT}{dW} = \frac{\frac{Ua}{\rho_{B}}(T_{a} - T) + r_{A}'\Delta H}{F_{i}C_{Pi}}$$

B:

$$\frac{\mathrm{dX}}{\mathrm{dW}} = \frac{-r_{\mathrm{A}}'}{F_{\mathrm{A0}}} = g(\mathrm{X},\mathrm{T})$$

كلية الصندسة - COLLEGE OF ENGINEERING

جامعة تكريت - Tikrit University

$A + B \Leftrightarrow C + D$

The rate law for this reaction will follow an elementary rate law.

$$-r_{A} = k \left(C_{A} C_{B} - \frac{C_{C} C_{D}}{K_{C}} \right)$$

Where K_e is the concentration equilibrium constant. We know from Le Chaltlier's law that if the reaction is exothermic, K_e will decrease as the temperature is increased and the reaction will be shifted back to the left. If the reaction is endothermic and the temperature is increased, K_e will increase and the reaction will shift to the right.

كلية الهندسة - COLLEGE OF ENGINEERING

 $K_{\rm C} = \frac{K_{\rm P}}{(\rm RT)^{\delta}}$

Van't Hoff Equation: $\frac{d \ln K_{\rm P}}{dT} = \frac{\Delta H_{\rm R}(T)}{RT^2} = \frac{\Delta H_{\rm R}^{~o}(T_{\rm R}) + \Delta \hat{C}_{\rm P}(T - T_{\rm R})}{RT^2}$

كلبة الهندسة - COLLEGE OF ENGINEERING

For the special case of $\Delta C_P = 0$

Integrating the Van't Hoff Equation gives:

$$K_{P}(T_{2}) = K_{P}(T_{1}) exp\left[\frac{\Delta H^{o}_{R}(T_{R})}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)\right]$$

كلية الصندسة - COLLEGE OF ENGINEERING

كلبة الهندسة - COLLEGE OF ENGINEERING

Are you ready?

كلبة الهندسة - COLLEGE OF ENGINEERING

Summary

- In this lecture, we covered:
- - Energy balance fundamentals for reactors with heat exchange.
- Adiabatic and heat exchange reactor design principles.
- - Analysis of reversible reactions and temperature effects.
- - Practical application of user-friendly equations.
- Heat exchange considerations are vital for optimizing reactor performance and efficiency.

كلية الصندسة - COLLEGE OF ENGINEERING